Semilinear fractional elliptic equations involving measures

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear fractional elliptic equations involving measures

We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...

متن کامل

Semilinear fractional elliptic equations with gradient nonlinearity involving measures

We study the existence of solutions to the fractional elliptic equation (E1) (−∆)u + ǫg(|∇u|) = ν in a bounded regular domain Ω of R (N ≥ 2), subject to the condition (E2) u = 0 in Ω, where ǫ = 1 or −1, (−∆) denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is ...

متن کامل

Elliptic Equations Involving Measures

3 Semilinear equations with absorption 19 3.1 The Marcinkiewicz spaces approach . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Admissible measures and the ∆2-condition . . . . . . . . . . . . . . . . . . . 26 3.3 The duality method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Bessel capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Sharp...

متن کامل

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...

متن کامل

Weakly and strongly singular solutions of semilinear fractional elliptic equations

If p ∈ (0, N N−2α ), α ∈ (0, 1), k > 0 and Ω ⊂ R is a bounded C domain containing 0 and δ0 is the Dirac measure at 0, we prove that the weak solution of (E)k (−∆) u + u = kδ0 in Ω which vanishes in Ω is a weak singular solution of (E)∞ (−∆) u + u = 0 in Ω \ {0} with the same outer data. Furthermore, we study the limit of weak solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α N ], the limit is inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2014

ISSN: 0022-0396

DOI: 10.1016/j.jde.2014.05.012