Semilinear fractional elliptic equations involving measures
نویسندگان
چکیده
منابع مشابه
Semilinear fractional elliptic equations involving measures
We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...
متن کاملSemilinear fractional elliptic equations with gradient nonlinearity involving measures
We study the existence of solutions to the fractional elliptic equation (E1) (−∆)u + ǫg(|∇u|) = ν in a bounded regular domain Ω of R (N ≥ 2), subject to the condition (E2) u = 0 in Ω, where ǫ = 1 or −1, (−∆) denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is ...
متن کاملElliptic Equations Involving Measures
3 Semilinear equations with absorption 19 3.1 The Marcinkiewicz spaces approach . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Admissible measures and the ∆2-condition . . . . . . . . . . . . . . . . . . . 26 3.3 The duality method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Bessel capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Sharp...
متن کاملNon-homogeneous semilinear elliptic equations involving critical Sobolev exponent
where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...
متن کاملWeakly and strongly singular solutions of semilinear fractional elliptic equations
If p ∈ (0, N N−2α ), α ∈ (0, 1), k > 0 and Ω ⊂ R is a bounded C domain containing 0 and δ0 is the Dirac measure at 0, we prove that the weak solution of (E)k (−∆) u + u = kδ0 in Ω which vanishes in Ω is a weak singular solution of (E)∞ (−∆) u + u = 0 in Ω \ {0} with the same outer data. Furthermore, we study the limit of weak solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α N ], the limit is inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2014
ISSN: 0022-0396
DOI: 10.1016/j.jde.2014.05.012